
HBSniff: A Static Analysis Tool for Java Hibernate

Object-Relational Mapping Code Smell Detection

Zijie Huang, Zhiqing Shao∗, Guisheng Fan∗, Huiqun Yu, Kang Yang, Ziyi
Zhou

Department of Computer Science and Engineering, East China University of Science and
Technology, Shanghai 200237, China

Abstract

Code smells are symptoms of sub-optimal software design and implemen-
tation choices. Detection tools were actively developed for general code
smell related to coupling and cohesion issues, but such tools cannot capture
domain-specific problems. In this work, we fill the gap in data persistence
and query code quality by proposing HBSniff, i.e., a static analysis tool
for detecting 14 code smells as well as 4 mapping metrics in Java Hibernate
Object-Relational Mapping (ORM) codes. HBSniff is tested, documented,
and manually validated. It also generates readable and customizable reports
for every project. Moreover, it is beneficial to Mining Software Repository
(MSR) research requiring large-scale analysis since project compilation is not
needed for detection.

Keywords: Code Smell, Object-Relational Mapping, Hibernate, Static
Analysis, Object-Oriented Programming

1. Introduction1

Code smells (i.e., symptoms of sub-optimal design and implementation2

choices [1]) are related to determining factors of software quality such as3

change- and error-proneness [2]. Compared with software defects, code smells4

∗Corresponding Authors.
Email addresses: hzj@mail.ecust.edu.cn (Zijie Huang), zshao@ecust.edu.cn

(Zhiqing Shao), gsfan@ecust.edu.cn (Guisheng Fan), yhq@ecust.edu.cn (Huiqun Yu),
15921709583@163.com (Kang Yang), zhouziyi@mail.ecust.edu.cn (Ziyi Zhou)

Preprint submitted to Science of Computer Programming January 7, 2022

are more likely to be underestimated, and they have long life-cycles, which5

means they may impose negative effects in the long run [2]. Thus, code smell6

detectors were actively developed to capture severe issues that may hinder7

maintainability. Recently, researchers found that general smell detection8

tools were not able to capture more specific problems related to domain-9

specific code [3], and domain-specific smells (e.g., for data persistence [4, 5,10

6, 7]) were attracting more attention from researchers and practitioners.11

To facilitate Object-Oriented Programming (OOP), practitioners use12

Object-Relational Mapping (ORM) frameworks which bridge database and13

application by filling the gap of data mapping and persistence [4, 8]. Despite14

their flexibility and capability, there exist various challenges in the applica-15

tion of ORM [8] including the metamorphic class and table inheritance [9, 10],16

the inconsistency in data structure [11], and the uncontrollable propagation17

of relational data retrieval [12]. Consequently, ORM usage is regarded as18

a double-edged sword [4, 8] or even an anti-pattern [13]. However, recent19

studies suggested ORM need not affect performance if used properly [4], and20

practitioners need more static analysis tool support to help them with de-21

velopment [3]. In response, related studies [13, 14] outlined several smells22

and refactoring strategies to cope with them. In most cases, they either did23

not provide tools, or the tools were early prototypes and requires project24

compiling, which is not ideal [15, 16] for large-scale analysis over real-world25

systems. Thus, we fill the gap by proposing a static analysis tool called HB-26

Sniff (HiBernate Sniffer) for ORM code smell detection. Similar to related27

studies [3, 12, 13, 14, 17, 18, 19], we use the trending Java Hibernate1
28

framework as the context of our implementation.29

The contributions of our work include:30

• We implement a Hibernate code quality static analysis tool called31

HBSniff for detecting 14 code smells and calculating 4 mapping metrics.32

• Compared with the state-of-the-art dynamic analysis tool [14], we im-33

plement more code smells, and our tool supports the detection of projects34

using Java version greater than 1.7.35

• We manually validate our tool on 5 open-source projects and 1 commer-36

cial project, and we prove the high impact of 7 out of 8 performance smells37

in a case study.38

The highlights of HBSniff are:39

1https://hibernate.org/

2

• Compilation is not required for the evaluated project.40

• Test cases and documentations for every smell detector and metric are41

included.42

• The tool generates a customizable and readable report for every project.43

• The code is open-sourced on GitHub.44

The rest of this paper is organized as follows. In Section 2 we introduce45

the problems, background, and summarize related work. Section 3 presents46

the architecture and the implemented smells, while Section 4 outlines the47

evaluation results, the advantage of our tool, as well as further research48

opportunities. In Section 5 we present illustrative examples of our tool.49

Finally, Section 6 concludes the paper and describes future research.50

2. Problems and Background51

In this section, we introduce the background and related work of ORM52

code quality analysis as well as code smells.53

2.1. Java ORM and Hibernate Query Language (HQL)54

Listing 1: Example of An ORM Entity (User.java)

package com . example . b log . models ;55

import javax . p e r s i s t e n c e . ∗ ; import java . u t i l . ∗ ;56

import java . i o . ∗ ; import lombok . Data ;57

@Data @Entity @Table (” u s e r s ”)58

public class User implements S e r i a l i z a b l e {59

@Id @Column60

private I n t eg e r id ;61

@Column(unique = true)62

private St r ing emai l ;63

@Column64

private St r ing password ;65

@Column66

private St r ing name ;67

68

@OneToMany(f e t ch = FetchType .LAZY, mappedBy = ” user ”)69

private List<Post> post s = new ArrayList <>();70

71

public User () {} // No−Arg Constructor72

}73

3

Java ORM frameworks implement the Java Persistence API (JPA2) in74

order to map the tables, columns, and relationships of trending RDBMS75

(Relational DataBase Management Systems, e.g., MySQL3) to the OOP-76

driven classes, attributes, and inheritance [8]. Listing 1 shows an example77

of an ORM entity class. Classes annotated with @Entity indicates that it78

is an entity in the ORM context, while the @Table annotation specifies its79

corresponding RDBMS data table. Moreover, @Id could be used to specify80

the unique identifier (in most cases, the corresponding field of the Primary81

Key of RDBMS data table), and relational annotations like @ManyToOne,82

@OneToMany could be used to describe relationships between entities with83

FetchType (e.g., EAGER, LAZY) specified to determine whether data should84

be fetched in advance or on demand.85

Listing 2: Example of A User Query (Method Extracted from UserRepository.java)

86

public List<User> getUserByEmail (S t r ing queryEmail){87

EntityManager em = connect ion . createEntityManager () ;88

St r ing hql = ”from User u where u . emai l=: emai l ” ;89

90

Query query = em. createQuery (hql , User . class) ;91

query . setParameter (” emai l ” , queryEmail) ;92

93

List<User> r e s u l t s = query . g e tR e s u l t s l i s t () ;94

return r e s u l t s ;95

}96

Listing 2 demonstrates an example of an HQL query using the entity class97

of Listing 1, which is a method to retrieve users by their email addresses.98

The HQL template including the email parameter is defined in the String99

variable called hql, and it is later populated by the method parameter called100

queryEmail. Finally, the populated HQL query is executed by Hibernate,101

and the results are returned in a List collection of the User entities. HQL102

is a SQL-like query language designed for ORM [13, 20]. HQL could either103

be generated by ORM or specified by developers. Then, ORM will translate104

HQL to executable SQLs for RDBMS. Later, the results of the queries will105

be processed by ORM and presented with the form of OOP in the context of106

2https://www.jcp.org/en/jsr/detail?id=338
3https://www.mysql.com/

4

JVM (Java Virtual Machine). We focus on the human-written HQLs in this107

work.108

2.2. ORM Code Quality Analysis and Opitimization109

Since ORM relies heavily on automatic relational data retrieval and map-110

ping, performance issues are primary concerns of practitioners. Procaccianti111

et al. [21] found that ORM approaches can introduce a 70% increase in exe-112

cution time, and they significantly increased energy consumption. However,113

there existed conflicting opinions indicating ORM need not affect perfor-114

mance if used properly [4]. Thus, researchers intended to find best prac-115

tices to ensure the appropriate usage of ORM. Chen et al. [22] proposed116

a cache optimizers for Hibernate-based web applications, which improved117

the throughput up to 138% comparing to default caching strategy. Singh et118

al. [23] exploited multi-objective genetic algorithms to improve ORM per-119

formance by optimizing ORM configurations. Lorenz et al. [9] compared the120

performance of 3 different mapping strategies and provided visualizations of121

radar charts as conclusions. Chen et al. [3] conducted an empirical study122

on ORM code changes, they found that ORM codes were frequently modi-123

fied, and such modifications lacked static analysis tool support. Meurice et124

al. [11] proposed a detection approach to address inconsistencies in ORM125

code after database schema change. Nazário et al. [24] proposed a devel-126

opment framework to solve 12 problems with mapping problems as well as127

their consequences.128

2.3. Domain-Specific Code Smells129

The state-of-the-arts of code smell detection tools mainly focused on gen-130

eral code smells such as coupling, cohesion, and complexity issues [25], such131

as Feature Envy, Spaghetti Code, and Complex Class. However, since recent132

work revealed there may be “other fish in the sea [1, 26]” that may impose133

uncaptured impact to software maintainability, various domain-specific code134

smell detection tools were proposed. For example, in the domains related135

to our work, Aniche et al. outlined various smells of model, view, controller136

codes in web applications [27], and the quality of Structured Query Language137

(SQL) queries [5, 6, 7] were also discussed.138

In terms of ORM smells that we implement, Holder et al. [10] proposed139

a metric suite to measure ORM mapping code complexity. Silva et al. [14]140

proposed a set of rules to check if Hibernate entity codes follow JPA spec-141

ifications. Loli et al. [13] summarized ORM code smells proposed in prior142

5

studies [3, 12, 17, 18, 19] as well as in grey literature, and they investigated143

the agreement of developers towards the definition of smells. Results showed144

most developers agree with the definitions and severity.145

3. Software Framework146

3.1. Software Architecture147

JavaParser
Library

{Type, Method, Constructor}
Declaration

Fields, Relations, Annotations, etc.

HQLAndContext
ORM Entities, Fields,

Container/CalledIn Methods

ParametreOrField
Names of Type, Modifiers,

Annotations, etc.

EntityParser HQLExtractor

SmellDetector
Relational Smell×4,

Entity Smell×10

MappingMetrics
TATI, NCT, NCRF, ANV

The parser Sub-package

The model Sub-package

The detector Sub-package
 Excel Report

Inheritance &
Mappings of ORM Entities

Relations & Implementations
of ORM Entities and HQL Queries JSON / CSV Data

Java Project
Source Code

The Scope of HBSniff Program
Visualization
and Output

Parameter:
-o

<$outputPath$>

Command-line Input

Higher Abstractions of JavaParser AST

Results

HBSniff Data Structure
Parameter:

-i

<$projectRootPath$>

ASTs
of

Java
Classes

Figure 1: The general architecture of HBSniff.

HBSniff is a Java project using Maven4 as dependency management148

and building tool which consists of 3 major modules (sub-packages), i.e.,149

model, parser, and detector. The general architecture is depicted in Fig-150

ure 1. The light gray colored box represents the scope of HBSniff code,151

while the dark gray colored boxes are sub-packages of HBSniff. The blue-152

colored boxes are classes in the sub-packages, and the white-colored boxes153

are external libraries and resources.154

First, users specify the path of the project to detect as input (the -i155

parameter) and the path of the output directory (the -o parameter). Then,156

the program constructs higher level abstractions (whose data models are157

available in the model sub-package) in the parser sub-package using Java-158

Parser5. Meanwhile, it locates HQL in the context of the method and159

class containing the method call. Moreover, it finds the method that calls160

the method containing HQL (CalledIn methods in Fig. 1). Afterwards,161

4https://maven.apache.org/
5https://javaparser.org/

6

the generated models will be used to populate the context of code smell162

detectors. Finally, the detection and metric evaluation will be performed,163

and the results will be converted to Excel reports as well as csv and JSON164

data. The demonstrations of the outputs are available in Section 5.165

The implementation of the 10 smell detectors and 4 mapping metrics fol-166

lows their definitions, which will be described in the next Subsection. Each167

detector class extends a class called SmellDetector which provides standard168

interface methods and basic capabilities (e.g., loading all available Hiber-169

nate entities). Since we only have 4 closely related MappingMetrics to170

detect, they are now implemented in a single file. We will exploit a strategy171

similar to SmellDetector if more metrics are developed in the future.172

Apart from the detectors, we also implement 2 parsers of HQL and Hi-173

bernate entities to avoid operating directly on the lower-level JavaParser174

ASTs, which may be more challenging to comprehend and maintain. The175

parsers are designed to retrieve relations, inheritance, mappings, and other176

implementation details from the original JavaParser ASTs. We introduce177

the 2 parsers in the next paragraphs.178

The EntityParser consists of several methods aiming to parse Java179

classes to the JavaParser CompilationUnits , and convert180

CompilationUnit toHBSniff-defined TypeDeclaration in the model pack-181

age. Each TypeDeclaration refers to a Java class (including Hibernate182

entities), which contains its nested fields, its relations with nested types, its183

class- and method-wide annotations, its constructors, and so on. Meanwhile,184

HBSniff also defines the abstractions of methods and constructors.185

The HQLExtractor locates the createQuery method call which indicates186

potential HQL usage [28], and generates HQLAndContext objects containing187

the HQL query String and its corresponding context, e.g., the signature of188

the method containing HQL (i.e., container method of HQLAndContext in189

Fig. 1), the available types and their fields (presented in the190

ParametreOrField objects from the model sub-package) of the entities in191

the FROM phrase of the HQL query, the methods which call the container192

of HQL (i.e., CalledIn methods of HQLAndContext in Fig. 1), and so on.193

3.2. Inter-Entity Relational Smells Detected194

Relational smells summarized in [13] are inter-entity smells caused by195

inappropriate usage of data retrieval strategies in entity relationships. Some196

of the relational smells are related to the N+1 performance issue. The197

N+1 problem occurs when an application retrieves a parent entity from the198

7

database, and then loops through a collection field of the entity containing199

N other entities. Hibernate may generate a query for every iteration to200

retrieve smelly entities, which means we call to the database recurrently. In201

total, the application will call the database once for every row (i.e., for N202

times) returned by the original query, and the plus one refers to the original203

query. This problem could lead to performance issue if the size of N is204

large. However, reducing N is not acceptable since we may need that large205

amount of data. The appropriate way to address it is to correctly configure206

the relationships between entities and the strategies of data fetching. For207

example, using the LAZY FetchType with specified BatchSize for on-demand208

batch retrieval. The relational smells are listed as follows.209

(1) Eager Fetch [12, 17, 18]: Hibernate preloads all fields annotated210

with the EAGER FetchType when the data class is initialized, even if some211

of them will never be accessed. To avoid performance issues (i.e., retrieving212

too much data in advance), data should be retrieved on demand.213

(2) Lacking Join Fetch [12, 18]: Fields annotated with EAGER214

FetchType should be joined by join fetch in HQL to be retrieved through215

one query using join. Otherwise, such fields would be retrieved by N addi-216

tional queries if the parent object is initialized, resulting in the N+1 problem.217

(3) One-By-One [12, 17]: A collection annotated with @OneToMany218

or @ManyToMany using LAZY FetchType will be fetched one-by-one in every219

loop iteration. @BatchSize should be involved to load data on demand and220

in batch.221

(4) Missing ManyToOne [19]: Using @OneToMany annotation in a field222

without @ManyToOne presented on the other side of the relationship may also223

lead to the N+1 problem.224

3.3. Intra-Entity and Application Smells Detected225

Entity smells are caused by inappropriate definition or application of226

entity fields and methods. Smells (5) to (13) are summarized in [14], while227

Smell (14) is described in [13]. The entity smells are listed as follows.228

(5) Collection Field: Collection fields should use Set instead of List229

due to performance concern, e.g., an insertion after deletion in a List may230

cause Hibernate to remove all the entities and re-insert them.231

(6) Final Entity: Using final classes as entities would disable the proxy232

functionality of Hibernate to enhance the performance of lazy loading.233

Thus, the LAZY FetchType will fall back to EAGER, and no warning or error234

8

message will be thrown by Hibernate. As a result, the performance will be235

harmed silently.236

(7) Missing No Argument Constructor: A no argument constructor237

should be implemented for Hibernate to generate an entity object using238

reflection, otherwise Hibernate will use Java reflection to initialize entities,239

which will consume more resources. Moreover, if Hibernate is used as a240

provider of JPA, it will throw an org.hibernate.InstantiationException,241

and the application may crash since it may not be able to handle it.242

(8) Missing Identifier: Identifier field should be specified to uniquely243

determine an entity. Otherwise, comparators of objects may be confused244

when dealing with data objects containing identical data from different rows.245

(9) Missing Equals Method: The default equals method compares246

the reference of objects, which is not ideal for comparing entities, especially247

for collection-related operations. The lack of an appropriate equals method248

will cause failure in reconnecting the detached entities, which may cause data249

persistence problems such as duplication.250

(10) Missing HashCode Method: HashCode is vital for collections251

such as HashSets to determine equivalent entities. The consequence of this252

smell is similar to Missing Equals Method.253

(11) Using Identifier in Equals or HashCode Methods: The iden-254

tifier should not be used in equals and hashCode since all transient objects255

may be equal because their identifiers could be null. The consequence of this256

smell is similar to Missing Equals Method.257

(12) Not Serializable: Entities which would leave the domain of JVM258

(i.e., detached for data export) should implement the Serializable inter-259

face. Otherwise the serialization may fail, and Java will throw an exception260

called java.io.NotSerializableException.261

(13) Missing Accessor Methods: Although Hibernate does not262

require accessor methods, JPA specification recommends implementing pub-263

licly visible getters and setters to access and update private fields.264

(14) Local Pagination: Built-in pagination of ORM should be used to265

fetch the data of each page instead of fetching all data and locally split them266

for pagination.267

3.4. Mapping Metrics Implemented268

The 4 Mapping metrics [10] are designed to evaluate data redundancy269

and performance of entities related to inheritance. Thresholds to identify a270

smell should be investigated further.271

9

Table Accesses for Type Identification (TATI): The number of272

tables needed to identify the requested type of entity. Higher TATI indicates273

more queries will be executed to construct an object of the entity.274

Number of Corresponding Tables (NCT): The number of tables275

that contain data of an entity, which measures object retrieval performance.276

The impact of higher NCT is similar to higher TATI.277

Number of Corresponding Relational Fields (NCRF): The num-278

ber of relational fields in all tables that correspond to each non-inherited279

non-key field of an entity, which measures change propagation. Higher NCRF280

indicates more queries will be executed to change data of an entity since there281

exists data redundancy in terms of the relational fields.282

Additional Null Values (ANV): The number of null values in the283

row of union superclasses, which measures the data redundancy. Higher284

ANV indicates more storage space is used to store null values since entities285

affected by such a problem are likely to be stored with other entities (with286

nonidentical fields) in the same table.287

4. Implementation and Empirical Results288

HBSniff could be executed as a command-line program under JDK289

(Java Development Kit) version 1.8 and above with a line of command, e.g.,290

java -jar HBSniff-1.6.8.jar -i <projectRootPath> -o291

<outputPath>. The tool is shipped together with unit tests for all smells292

and metrics implemented and documentations for both developers and users.293

However, since it is also a tool for practical usage, we test it on real-world294

projects.295

4.1. Manual Validation of Detection Results296

We perform smell detection over 5 open-source projects and 1 commercial297

project (CP). The brief introduction of the projects are listed in Table 1. Prior298

study [14] constructed a dataset of 77 projects for evaluation, however, the299

authors found most of them were toy and example projects. To generate300

a more practical dataset, we pick 3 non-toy projects from [3, 14] having301

actual purpose and functionality. We also randomly pick the 4th and 5th302

project by locating createQuery method calls using GitHub search to find303

projects performing potential HQL execution. The 6th project is used to304

confirm if our tool can be used in a more realistic scenario. The smells305

are manually validated by the 1st and the 5th author independently. The306

10

Project Purpose Entities I% R%

WeixinMultiPlatform [14] Content management system. 26 100.00 38.46

Jpa-issuetracker [14] Development issue tracker. 6 100.00 16.67

Broadleaf Commerce [3] E-commerce framework. 162 100.00 71.60

Devproof Portal 6 Blogging platform. 22 100.00 72.73

2ndInvesta 7 Invest management. 16 100.00 62.50

CP (Commercial) Order processing. 27 100.00 77.78

Table 1: Projects analyzed. I% refers to entities affected by intra-entity smells. R% refers
to entities affected by relational smells.

detection is all accurate and there is no missing case. The analyzed results307

show that Hibernate-based projects are heavily affected by ORM smells,308

which indicates the need of analyzing empirically the impact of these smells309

to the quality of software in large-scale.310

However, we fail to find an appropriate project for assessing the 4 metrics.311

Nevertheless, we implement the Hibernate-based examples of the original312

paper [10], which is also available with database generation code (ddl) in313

the example folder in our source code. Note that since recent versions of314

Hibernate do not support mixed inheritance strategy8, our implementation315

is slightly different from the original paper. Finally, the 4 metrics are verified316

by unit tests and manual evaluation of the sample project 9.317

4.2. Impact of ORM Performance Smells318

The smells we detect are either maintainability-related (i.e., smells (8)-319

(13)) or performance-related. Since the evaluation of maintainability impact320

relies on empirical studies over large-scale dataset, it is not within the scope321

of our work. However, we are still interested in the significance of the imple-322

mented performance smells, which could be measured by benchmark. Thus,323

we measure the impact of the smells (1)-(7) and (14) by retrieving or edit-324

ing relational data in different scales (i.e., 50, 500, and 50,000 instances of325

relational entities).326

We construct 3 entities (e.g., A, B, C) for every smell. Entity A is the327

parent, while B is a child of A, and C is a child of B. The parent entities328

6https://github.com/devproof/portal
7https://github.com/2ndStack/2ndInvesta
8Mixing inheritance is not allowed. https://hibernate.atlassian.net/browse/HHH-7181
9https://tinyurl.com/2as46jx8

11

Smell 10 × 5 Instances 100 × 5 Instances 10000 × 5 Instances
Clean Smelly Impact Clean Smelly Impact Clean Smelly Impact

(1) 202 242 0.20 209 1457 5.97 304 130462 428.15
(2) 134 247 0.84 161 1469 8.12 692 123464 177.42
(3) 120 243 1.03 275 1474 4.36 2027 123190 59.77
(4) 122 240 0.97 268 1461 4.45 2013 124036 60.62
(5) 131 271 1.07 255 1561 5.12 507 140353 275.83
(6) 207 507 1.45 211 2743 12.00 344 139279 403.88
(7) 248 250 0.01 1484 1496 0.01 123465 125355 0.02
(14) 194 269 0.39 350 590 0.69 583 2791 3.79

Table 2: The performance of smelly and clean entities. The unit of the performance in
the Clean and Smell columns is millisecond.

own the relations. Except for the foreign key field (parent id), the entities329

have only 1 additional MySQL VARCHAR(255) column called name mapped330

as a corresponding String field in Java. Every instance of Entity B owns331

5 instances of entity C as children, and we alter the number of the children332

of entity A (i.e., instances of entity B) in {10, 100, 10,000} to measure the333

impact of smells to software systems with different data scale. We present334

a 3-level relation because we intend to recover a more practical scenario by335

using multi-level nested relation.336

To ensure a comparable and fair performance score, each test is per-337

formed 10 times, and we re-execute the program rather than performing the338

queries in loops since Hibernate built-in cache cannot be disabled, and it339

may underestimate the impact. Afterwards, we present the medians of the340

performance data in Table 2. The clean column refers to the entity which341

is not affected by the smell concerned, while the smelly column refers to the342

entities affected by the smells. The impact column measures the differences343

between the two performance divided by the performance of clean entities.344

The hardware environment of this experiment is consistent, i.e., AMD345

Ryzen 7 4800H CPU, DDR4 16GB 2666MHz RAM, and 512GB SSD. We346

use MySQL as the database. All queries are performed on Hibernate347

5.4.31 and Java 11. To clarify, we do not test the performance impact of the348

combinations of smells. For example, in the evaluation of the pagination349

smell (14), we implement LAZY FETCH with BatchSize specified (and thus350

the entity is not affected by the prior smells), and we retrieve the first page351

since it is more likely to be the most visited page. However, smell (7) Miss-352

12

ing No Argument Constructor is an exception since we intend to find353

out the impact of reflection-based constructor generation in more entities,354

and thus we test this smell on EAGER Fetch entities.355

From the impact column, we can easily conclude that performance smell356

could impose more impact if more relational entities present in queries.357

Meanwhile, except for smell (7) Missing No Argument Constructor,358

almost all smells cause significant decline in performance if there are more359

than 500 instances of relational entities. Moreover, even in the case of 50 in-360

stances of instances of relational entities, the decline of performance caused361

by the smells may also reach 20% to 145%. Thus, we believe such smells are362

worth refactoring.363

4.3. Comparison with Related Tools364

Difference with Respect to [14]. Prior study [14] proposed a design365

rule checker which is capable of detecting 9 out of 10 intra-entity smells366

(except for Local Pagination). However, the checker requires the analyzed367

project to compile, and its upstream parser (DesignWizard 10) provide full368

support only for the class files compiled with JDK version less than or equal to369

1.7. JDK 1.7 is no longer supported11 by its manufacturer since April 2015.370

Compared with DesignWizard, JavaParser is a static analysis based371

Java AST parser that updates weekly and supports the language features up372

to the latest Java 15. Moreover, we compile 2 projects in the datasets in Table373

1 to verify the results, and we fix some issues in its implementation, e.g., we374

can detect the cases of using identifier annotations in accessor methods, calls375

of parent methods by super in equals and hashCode, and we do not treat376

missing equals and hashCode as an occurrence of smell (11) since default377

methods compare object references instead of attributes, and so on.378

The 3 Unimplemented Data Usage Smells Mentioned in Section379

4.5 of [13]. The original source of the 3 smells [18] used static analysis to380

locate method calls of queries, and analyzed the accessed data using dynamic381

analysis. We do not implement them since static analysis is not able to profile382

execution. However, we will extend our work to find trials of redundant383

usage, e.g., locating findAll and update operations of fetching a whole384

entity or table. To achieve this goal, a large-scale empirical analysis should385

10https://github.com/joaoarthurbm/designwizard
11End of Public Updates Notice. https://java.com/en/download/help/java 7.html

13

be conducted to capture different forms of entity update. Moreover, we may386

propose new data usage smells, which is not within the scope of this work.387

4.4. Remarks on Implementation388

Exclusion of Controversial Smells. We allow users to exclude every389

smell in command-line parameter -e in case they do not perceive them as390

real problems, e.g., the impact of missing no argument constructor is almost391

negligible.392

Drawbacks of Static Analysis. Static analysis has its unavoidable393

drawback since run-time information is not available. To cope with them,394

we need to specifically implement solutions for every up-mentioned case to395

detect the application of third-party plugins. For example, we cover the396

usage of libraries such as Lombok12 and Apache Commons13 to generate397

equals, hashCode, and accessor (getter, setter) methods. We may not398

be able to detect similar usage if practitioners use other libraries.399

Detecting Pagination Smell. We locate the setMaxResults or400

setFirstResult method calls in parent methods with HQL appearance, and401

we analyze if the code component that called the method defines any Integer402

or Long object whose name contains “page” or “limit”. This complies with403

the sample code of [13], which may be impractical, and may be improved in404

future work.405

4.5. Research Opportunities406

Since RDBMS and software applications are different systems, there still407

exist gaps (also known as “impedance mismatch” [29]) between them. ORM408

aimed to address this problem, but they introduced new code quality issues409

and more complexity. For practitioners, the quality of ORM code and the410

appropriate application of ORM should always be considered to make more411

reasonable refactoring plans. For researchers, more empirical studies could412

be made to measure the impact of data persistence code quality to software413

maintainability and reliability. To these ends, the research opportunities414

brought by our tool include but not limited to:415

• Evaluating ORM smells in large-scale datasets (e.g., GitHub Mirrors416

[30]) to study their occurrence, impact, and interactions with other code417

smells and architectural issues;418

12https://projectlombok.org/
13https://commons.apache.org/

14

• Integrating our command-line tool into the process of Continuous In-419

tegration to generate reports after every development iteration of software420

code, or extending our code to build an IDE-based detection tool such as421

JDeodorant [25] to provide just-in-time support for practitioners;422

• Using our static analysis code base to develop detection methods for423

new ORM-related smells;424

• Revealing the losses and gains of ORM detaching. For example, can425

we improve code maintainability and query performance by transferring to426

“lightweight” data persistence solutions such as semiautomatic ORM frame-427

works (e.g., MyBatis14) and native SQL queries with manual data class map-428

ping?429

5. Illustrative Example430

Figure 2 illustrates the exported xls report of the analyzed commercial431

project. Undetected smells are not presented. Fields in orange represents432

smelly, and texts in these fields are corresponding comments (e.g., affected433

entity attributes). Light green fields refer to clean entities.

Figure 2: A snapshot of the generated Excel report for the Broadleaf Commerce project.

434

14https://mybatis.org/mybatis-3/

15

Listing 3 is an example of the JSON output of HBSniff. The available435

information include names of smells (the name field), file paths (the file436

field), names of the classes (the className field), positions of the detected437

smells in the source code (the position field), and comments of the smells438

(the comment field). Such data is also available in the csv output.439

Listing 3: Example of The JSON output for the portal project

{440

” A r t i c l e . java ” : [441

{442

”name” : ”UsingIdInHashCodeOrEquals ” ,443

” f i l e ” : ” . . . ” , // F i l e Path444

” po s i t i o n ” : ”(l i n e 36 , c o l 1)−(l i n e 193 , c o l 1)” ,445

”className ” : ” A r t i c l e ” ,446

”comment ” : ”Using ID <id> from equa l s .447

Using ID <id> from hashCode . ”448

} ,449

450

. . . // Other Smel l s451

] ,452

453

”Other Hibernate En t i t i e s ” : [454

. . . // Other Smel l s455

] , . . .456

}457

6. Conclusions and Future Work458

We presented a static analysis-based Java Hibernate ORM code smell459

detection tool called HBSniff which is capable for evaluating 14 smells and460

4 mapping metrics in uncompiled Java project source codes. Moreover, we461

conducted unit tests and manual verification for the detectors and metrics to462

ensure the reliability of our implementation. We also evaluated the impact463

of the implemented performance smells, and we suggested refactoring them464

as soon as possible since most of them could greatly impact performance.465

Future work includes: (1) proposing new ORM smells and improve the466

existing implementations, (2) extending our scope to Python ORMs, and (3)467

assessing the impact of ORM smells to architecture degradation and software468

maintainability.469

16

Acknowledgements470

This work was partially supported by the National Natural Science Foun-471

dation of China under Grant No. 61772200, and the Natural Science Foun-472

dation of Shanghai under Grant No. 21ZR1416300.473

References474

[1] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, A. De Lucia, The475

scent of a smell: An extensive comparison between textual and struc-476

tural smells, IEEE Transactions on Software Engineering 44 (10) (2018)477

977–1000.478

[2] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, A. De Lucia,479

On the diffuseness and the impact on maintainability of code smells:480

A large scale empirical investigation, Empirical Software Engineering481

23 (3) (2018) 1188–1221.482

[3] T.-H. Chen, W. Shang, J. Yang, A. E. Hassan, M. W. Godfrey,483

M. Nasser, P. Flora, An empirical study on the practice of maintaining484

object-relational mapping code in Java systems, in: Proc. 13th Inter-485

national Conference on Mining Software Repositories (MSR), 2016, p.486

165–176.487

[4] G. Vial, Lessons in persisting object data using object-relational map-488

ping, IEEE Software 36 (6) (2019) 43–52.489

[5] C. Nagy, A. Cleve, A static code smell detector for SQL queries embed-490

ded in Java code, in: Proc. IEEE 17th International Working Conference491

on Source Code Analysis and Manipulation (SCAM), 2017, pp. 147–152.492

[6] B. A. Muse, M. M. Rahman, C. Nagy, A. Cleve, F. Khomh, G. Antoniol,493

On the prevalence, impact, and evolution of SQL code smells in data-494

intensive systems, in: Proc. of the 17th International Conference on495

Mining Software Repositories (MSR), 2020, p. 327–338.496

[7] F. Gonçalves de Almeida Filho, A. D. Forte Martins, T. da Silva Vin-497

uto, J. M. Monteiro, Í. Pereira de Sousa, J. de Castro Machado,498

L. Souza Rocha, Prevalence of bad smells in PL/SQL projects, in: Proc.499

IEEE/ACM 27th International Conference on Program Comprehension500

(ICPC), 2019, pp. 116–121.501

17

[8] A. Torres, R. Galante, M. S. Pimenta, A. J. B. Martins, Twenty years502

of object-relational mapping: A survey on patterns, solutions, and their503

implications on application design, Information Software Technology 82504

(2017) 1–18.505

[9] M. Lorenz, J.-P. Rudolph, G. Hesse, M. Uflacker, H. Plattner, Object-506

relational mapping revisited: A quantitative study on the impact of507

database technology on O/R mapping strategies, in: Proc. 50th Hawaii508

International Conference on System Sciences (HICSS), 2017, pp. 4877–509

4886.510

[10] S. Holder, J. Buchan, S. G. MacDonell, Towards a metrics suite for511

object-relational mappings, in: Proc. 1st International Workshop on512

Model-Based Software and Data Integration (MBSDI), 2008, pp. 43–54.513

[11] L. Meurice, C. Nagy, A. Cleve, Detecting and preventing program in-514

consistencies under database schema evolution, in: Proc. IEEE 16th515

International Conference on Software Quality, Reliability and Security516

(QRS), 2016, pp. 262–273.517

[12] T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. N. Nasser,518

P. Flora, Detecting performance anti-patterns for applications developed519

using object-relational mapping, in: Proc. 36th International Conference520

on Software Engineering (ICSE), 2014, pp. 1001–1012.521

[13] S. Loli, L. Teixeira, B. Cartaxo, A catalog of object-relational mapping522

code smells for Java, in: Proc. 34th Brazilian Symposium on Software523

Engineering (SBES), 2020, pp. 82–91.524

[14] T. M. Silva, D. Serey, J. C. A. de Figueiredo, J. Brunet, Automated525

design tests to check hibernate design recommendations, in: Proc. 33th526

Brazilian Symposium on Software Engineering (SBES), 2019, pp. 94–527

103.528

[15] V. Lenarduzzi, V. Nikkola, N. Saarimäki, D. Taibi, Does code quality529

affect pull request acceptance? An empirical study, Journal of Systems530

and Software 171 (2021) 110806.531

[16] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lu-532

cia, D. Poshyvanyk, There and back again: Can you compile that snap-533

shot?, Journal of Software: Evolution and Process 29 (4) (2017) e1838.534

18

[17] T.-H. Chen, Improving the quality of large-scale database-centric soft-535

ware systems by analyzing database access code, in: Proc. 31st IEEE536

International Conference on Data Engineering Workshops (ICDEW),537

2015, pp. 245–249.538

[18] T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser, P. Flora,539

Finding and evaluating the performance impact of redundant data ac-540

cess for applications that are developed using object-relational mapping541

frameworks, IEEE Transactions on Software Engineering 42 (12) (2016)542

1148–1161.543

[19] P. Wȩgrzynowicz, Performance antipatterns of one to many association544

in hibernate, in: Proc. 2013 Federated Conference on Computer Science545

and Information Systems (FedCSIS), 2013, pp. 1475–1481.546

[20] L. Meurice, C. Nagy, A. Cleve, Static analysis of dynamic database usage547

in Java systems, in: Proc. 28th International Conference on Advanced548

Information Systems Engineering (CAiSE), pp. 491–506.549

[21] G. Procaccianti, P. Lago, W. Diesveld, Energy efficiency of ORM ap-550

proaches: An empirical evaluation, in: Proc. 10th ACM/IEEE Interna-551

tional Symposium on Empirical Software Engineering and Measurement552

(ESEM), ACM, 2016, pp. 36:1–36:10.553

[22] T.-H. Chen, W. Shang, A. E. Hassan, M. N. Nasser, P. Flora, Cacheop-554

timizer: Helping developers configure caching frameworks for hibernate-555

based database-centric web applications, in: Proc. 24th ACM SIG-556

SOFT International Symposium on Foundations of Software Engineering557

(FSE), 2016, pp. 666–677.558

[23] R. Singh, C. Bezemer, W. Shang, A. E. Hassan, Optimizing the559

performance-related configurations of object-relational mapping frame-560

works using a multi-objective genetic algorithm, in: Proc. 7th561

ACM/SPEC International Conference on Performance Engineering562

(ICPE), 2016, pp. 309–320.563

[24] M. F. C. Nazário, E. Guerra, R. Bonifácio, G. Pinto, Detecting and564

reporting object-relational mapping problems: An industrial report, in:565

Proc. ACM/IEEE 13th International Symposium on Empirical Software566

Engineering and Measurement (ESEM), 2019, pp. 1–6.567

19

[25] N. Tsantalis, T. Chaikalis, A. Chatzigeorgiou, Ten years of JDeodorant:568

Lessons learned from the hunt for smells, in: Proc. IEEE 25th Inter-569

national Conference on Software Analysis, Evolution and Reengineering570

(SANER), 2018, pp. 4–14.571

[26] F. Palomba, D. A. Tamburri, F. Arcelli Fontana, R. Oliveto, A. Zaid-572

man, A. Serebrenik, Beyond technical aspects: How do community573

smells influence the intensity of code smells?, IEEE Transactions on574

Software Engineering 47 (1) (2021) 108–129.575

[27] M. F. Aniche, G. Bavota, C. Treude, M. A. Gerosa, A. van Deursen,576

Code smells for model-view-controller architectures, Empirical Software577

Engineering 23 (4) (2018) 2121–2157.578

[28] C. Nagy, L. Meurice, A. Cleve, Where was this SQL query executed?579

A static concept location approach, in: Proc. IEEE 22nd Interna-580

tional Conference on Software Analysis, Evolution, and Reengineering581

(SANER), 2015, pp. 580–584.582

[29] W. R. Cook, R. Greene, P. Linskey, E. Meijer, K. Rugg, C. Russell,583

B. Walker, C. Wittig, Objects and databases: State of the union in 2006,584

in: Companion to the 21st ACM SIGPLAN Symposium on Object-585

Oriented Programming Systems, Languages, and Applications (OOP-586

SLA), 2006, p. 926–928.587

[30] R. Dyer, H. A. Nguyen, H. Rajan, T. N. Nguyen, Boa: Ultra-large-588

scale software repository and source-code mining, ACM Transactions589

on Software Engineering and Methodology 25 (1) (2015) 7:1–7:34.590

20

Required Metadata591

Current executable software version592

Nr. (executable) Software metadata
description

Please fill in this column

S1 Current software version v1.6.8
S2 Permanent link to executables of

this version
https : //github.com/HBSniff/
HBSniff/releases/tag/v1.6.8

S3 Legal Software License GPL
S4 Computing platform/Operating

System
Linux, OS X, Microsoft Windows.

S5 Installation requirements & depen-
dencies

JDK 8.0

S6 If available, link to user manual - if
formally published include a refer-
ence to the publication in the refer-
ence list

https://hbsniff.github.io/

S7 Support email for questions hzj@mail.ecust.edu.cn

Table 3: Software metadata (optional)

Current code version593

21

Nr. Code metadata description Please fill in this column
C1 Current code version v1.6.8
C2 Permanent link to code/repository

used of this code version
https : //github.com/
HBSniff/HBSniff

C3 Legal Code License GPL
C4 Code versioning system used git
C5 Software code languages, tools, and

services used
Java

C6 Compilation requirements, operat-
ing environments & dependencies

JDK 8.0, Maven 5

C7 If available Link to developer docu-
mentation/manual

https://hbsniff.github.io/

C8 Support email for questions hzj@mail.ecust.edu.cn

Table 4: Code metadata (mandatory)

22

